Neat products, low cost, no irills

Documentation for EasyDAQ-Kit 1 and EasyDAQ-
Kit 1+ for Raspberry Pi Pico™ experiments.

24 Experiments for the RASPBERRY PI PICO™.

o Raspberry Pi is a trademark of the Raspberry Pi Foundation

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Contents

INAEX OF TADIES ...ttt ettt e h e st st sttt e b e b sne e e ae e e s 4
TaTo [N Qo) i 7 ={ U <L USRIt 4
N [01 o o [¥ ot i [o] TN T T TSRS POUOP RO UPT PP 5
00 S (€ ol o Yo o T 0 T=Y oY Al 1) RPN 6
2 Yo (o [T o T~ PP UPSRN 8
2.2. The development ENVIFONMENTccoiciiiiiciiee ettt e e e e ctre e e s sar e e e ssata e e e enraeeeenanaeeeenn 8
T o][£ T T P PP PP U PP 9
S I o F= T o 11 V= I8 LTSRN 9
3.2. Aquick aside; lighting UP @n LEDccoocuiiiiiiiiiieeiiee ettt esree et e e st e e s e e s snre e e s s nreeas 9
3.3. Lighting up an LED USING the Pi PiCOcciiiiiiiii ettt e e e 11
3.4, Adding @ BULLON INPUL. cueeeiiiiiec e e e e s e bee e s s sabe e e s e sabee e e enaneeas 13
T T I T=N = TV =T OSSOSO PRO PP 14
T I 1 i £ 1ol 174 | PR S 15
3.7. PIRSENSOr BUIgIar @larmi........coo ittt e e et e e e et e e s eeabe e e e e entee e e eenraeas 18
3.8. Potentiometer and ADC.coouiiieeiieeeite ettt ettt sttt e s e sabe e sareesneeesabee s 20
R O X O T To I K 0D o [T o] F= 12 PSPPI 22
3.10. WS2812 Controllable RGB LED Strip ...ueeiiicieeiiiiieieiiiieeeecciteeeeeciteeesevteeessveeeessvteeesssnsneessnnes 24
A, IVIOFE TUN. ettt s h e st st et b e bt e s bt s bt e e at e et e e bt e ehe e eae e satesabeeabeebeenes 26
4.1. The Mathematics of driving LEDs (You can skip this bit if you like)......cccccooeeviiiieciiiniciees 26
L o F=Y o] o 0V o) - [1 I8 =1 TSP PPPUPPPR: 28
S T o 10T [=] g0 1U T3 Vo [T PSP PRR PRSP 28
4.4. Rising pitch USING P10 aNd SOUNTEIccuiiiiiiiiiee ettt e e et e e e sbae e e e sbaaeeeenees 29
4.5. Slightly improved pedestrian CroSSINGcccciiieiiciiieeeiieee e et e et e e eette e e e eerre e e e esrteeeesenraeeeeanes 30
4.6. Piezo sounder as @ KNOCK SENSOTcocuiiiiiiiiiii e e 31
4.7. Burglar alarm with PIO driven SOUNGENccuiiiiieiiiee ettt e e eetre e e e e sate e e e entaeeeeanes 34
4.8. Potentiometer PWM LED and PlO TONE....c..coiiiriiiiiiiieieeteesee et 35
4.9, MOre WS2812 @XAMPIES ..ccciiueiiieieiieeeieiieee ettt e eetee e stte e e s ette e e e sbteeeesbteeessbtaeeessaaeessnssaeeesnes 36
49.1. RAINDOW ON WS28L2 ...ttt et s s s e e r e s e s 36
4.9.2. RANAOM COIOULS ...ttt st ettt e bt e sbe e st et e e sbeesbeesaeesanenas 37
4.10. Installing ThoNNy 0N WINAOWS.......cooeiiiiiiiiee ettt e e e e e e e nrree e e e e e s e s ennrraeeeeaeeenaas 38
4.11. [I Y 0] 0V 0 1= e K-SR 40
LT o B ool B o [T ST PSSP PRRPRRT 42
(ST I o T=I Y o =Y Lo T o | PSSR 43
N €1 (o3 oY PRSP 44

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 2 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

The experiments

Experiment 1.
Experiment 2.
Experiment 3.
Experiment 4.
Experiment 5.
Experiment 6.
Experiment 7.
Experiment 8.
Experiment 9.
Experiment 10

Experiment 11

Experiment 12.
Experiment 13.
Experiment 14.
Experiment 15.
Experiment 16.
Experiment 17.
Experiment 18.
Experiment 19.
Experiment 20.
Experiment 21.
Experiment 22.
Experiment 23.

Experiment 24.

Version 1.1 23" April 2022

7= oL a1 oY= T o T I TR PSR 9

Lighting up an LED uSiNg the Pi PiCO.ccciiiiiiiiie ettt 11

SEQUENCING 5 LEDS. .cciiiiiiiiiiiieee ettt ettt e e e e ettt e e e e e s s satbe e e e e e e e s ssnnneaeaeeas 11
BUttoN LED and Pi PiCO ...eeiiiiiiiiieieeeee ettt ettt st 13
Passive sounder USiNg the ProCESSONcuuiieiiiiee ettt re et e e 14
Passive sounder USING the PlO........cuiviiiiiie ettt et 15
Traffic light wWith PassSiVe SOUNTET........cccuviiieiiee e e 15
LT A a4 o T o 2 PP 18
USING ThE PIR. ..ttt ettt e e e sbte e e e st e e e e s bt e e e ssnbaeeessabeeeeennreeas 19
PIR Burglar alarm with P10 driven SOUNdEr..........ccccuveiiiiieiiciie et 20
. Testing the POTENTIOMELET.oii e e e e e e e 20
PWIM CONEIOHEA LEDeiiiiiiieiieiee ettt sttt st st s s 21
120 LED GISPIAY v ee e seesseeseeseseeseeseseeseeseeeseseesessesesseesessassaneen 22
PIO controlled RGB LED Strip...c.ueeeiecuieeeiiiiiieeieiieeeesciieeeescteeeesvteeessveeeesssnseeesssneneeesnnns 24
LOUAEE SOUNET ...eiineiiiiiiieiee ettt ettt ettt st et sb e e et e e s abeesbee e sabeesabeesbeeesabeeenns 28
RISING PITCN SOUNTEY ..eeiieeiieeeeeee e ettt e e e e rte e e s eraeeeeeanes 29
improved pedestrian CroSSINGciuciiiiieciiee et erre e e e e e s srre e e seaaeeeeesaeeeeas 30
Energy harvesting with @ Piezo SOUNETcueeieeciiiie ittt 31
Using the Piezo sounder as a Simple SENSOI........ccivciiieiicieee e e e e 32
Using the ADC to make the Piezo into more sensitive SeNSOrcocccveecveeeeccieeeenns 33
Burglar alarm with PIO driven SOUNAEr.......ccocciiiiiiiiiee ettt e e 34
Using the potentiometer to control PWM and PIO.cccoeeciiiiicciiee e 35
RAINDOW ON WS2812 ...ttt ettt st s st 36
RANAOM COIOUIS... ettt ettt ettt st s s nbeens 37
Emal sales@easydac co.k Page 3 of 44

Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Index of tables

Table 1. COMPONENT LSt. .ooeiiieiciiee e e e e et e e e e e bt e e e e e bt e e e e sbtaeessntaeeesnraeeesanes 6
Table 2. Pictures of individual COMPONENTS.......ccuuiiiiiiiiee e e e e e sre e e e earae e e e 7
Table 3. Wiring table for EXperiment 3. ... ittt e st e s s sarae e s saaeaeeas 12
Table 4. 12C LCD Display Circuit Wiring SUIE.ueeivcuiiieieiieie ettt e esaree e s aaeee e 23
Table 5. FOrward VOIAge Of LEDS.......ccuuiiiiiiiiiecciiee ettt sttt e st e st e s saa e e e snbae e s ssnsaeesssnnneaeens 27
Table 6. LCD_AP| COMMANGS ..iiiiiiieeiiiiiieeeiiteeesciieeessiteeesssataeesssataeessssteeessassaeesssssseeesnsssesssnssseesssssseneens 40
B o] TR R € (o 1YY oY PPN 44

Index of figures

Figure 1. Raspberry Pi PiCO PINOULcc.uiii ittt e e tte e e e tte e e e eate e e s esteeeseantaeesensraeeesanes 9
Figure 2. Lighting @ White LED.ooiioiieie ettt sttt e e et e e et e e snta e e e sntaeeeenanreeaean 10
Figure 3. BENdING 1€8S 0N @ FESISTON. couuiiiiiiiiiieiccieee et ee et ee et e e e e e e s sar e e e s saare e e e sabseeesanbeeeesnnsneeaenn 10
Figure 4. SEqUENCING 5 LEDScoeiiiiiiiiiiiiiiiiieceeeeeeeeeeeeee e e e ee e e e e e eeeeeeeeeeeeee e e e e e e eeseeeeeeeseeeseeeeesseeseeeeseesenens 12
= U AR Y T =T o 1W o) o VAT 13
Figure 6. LED @and bUtton WiliNg......ciiiciiie ettt et e s st e e s saaa e e s saaa e e e snbaeeesnanneeaens 13
Figure 7. LED will stay lit for 2 seconds after releasing the button.cccceeeiiiieeiiiee e, 13
FIGUIE 8. SOUNTEN WITINE. coueviiieiiiiiieecieee ettt ee ettt e ettt e e st e e e s tr e e e s ataee e s sbaeeeeansseeesssaeeesansseeesansseeasnn 14
Figure 9. Traffic light with PO driven SOUNET.cocciiiiiiiiiie ettt e e 17
FIUIe 10 PIR WIth WIIES.......eiiii ettt ettt e e ettt e e e e ata e e e e aaa e e e eaaaeeesnsaeeesanseeeesannreeanan 18
FIUIE 11, PIR CONTIOIS .uviiiiiiiiieieiiiieeeiteee ettt ee ettt e ettt e sttt e e st e e e s ata e e e e sbaeeeeasseeesstaeeesnseeeesnnsseeaans 18
Figure 12. TEStING The PIR. ...eeiiiiie ettt e e e e st e e e saab e e e s staeeesansseeeennnreeaens 19
Figure 13. BUrglar @larmm CiFCUIT.eeicciiie et ceceee ettt e e e e et e e e e tae e e esans e e e saraeeesnsaeeesannreeanan 19
Figure 14. Testing the PoteNtioMETErccoc i iiii e sbre e e s sareeeens 21
FIgUre 15. [2C LCD diSPlay. ..cuueeeeeciieeieiieie e et ee ettt ee e ettt e e et e e e satr e e s sataeeesstaeeesneseeesssaeeesansseeessnsseeanns 22
Figure 16. Level shifter details.occuiie et e e et e e e ta e e e e earr e e e seareeaean 22
Figure 17. WS2812 RGB LED ST .eevuveieiieeniieiiiieniee ettt esiteesttessiteesbeessateesbeestteesabeessaseesaseesavaeesaveennns 24
Figure 18. RUNNING WS2812 LED STripP..ucciiiiiiiiiiiiieieeiiiiiiiiiiteeeeessisiiieeeeeesssssisreeeesssssssssssneeeessssssnnnnns 25
Figure 19. ReSiStor and LED CilrCUIL.......uuiiiiiiiiiiiiiieee ettt e e e e e et e e e e e s e e e saraaeeeeeeeeesnnnnnns 26
Figure 20. Wiring for IoUdEr SOUNTET.ccoccuiiiiiiiiie ettt e e e e sar e e s saaa e e e ssntaeeessanneeeens 28
Figure 21 Simple Piezo LED Circuit/ENergy HarveSter.c.ccovueiieeiieeieeieecreesreesree e ereesreesteesanesaneens 31
Figure 22. Sounder driving 2 LEDSuuiiiiiiiiiciiiiie ettt e e eeettee e e e e e e e e saate e e e e e e e e ssnnbaaaeeaeseseennnnnnns 32
Figure 23. Detecting the sounder 0N @ I0gIC PiN. ..uiiiiciiiiiiiiiie e e 32
Figure 24. Detecting the sounder using the ADC for more sensitivity.cccccevvvveeeriiieeeciieee e, 33
Figure 25. Potentiometer PWM LED and PIO tONe CirCUIt.....cceiiiiiciiiiiieeee et 35
= U N L S & Y=o |- RPN 40

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 4 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

1. Introduction

This kit is inspired by The Book “Getting started with MicroPython on Raspberry Pi Pico” (Otherwise
known as “The Book” in this document) published by Raspberry Pi™ Press and the amazing
Raspberry Pi Pico™ otherwise know in this document as “Pi-Pico”). You can buy The Book from many
outlets and the lovely people at Raspberry Pi™ have also made it free to download as a PDF:

https://hackspace.raspberrypi.org/books/micropython-pico

THE OFFICIAL RASPBERRY PI PICO GUIDE

Get started with

MicroPython

on Raspberry Pi Pico

The first edition of The Book had a few errors that were ironed out in the second edition.
Corrections are published at the above URL.

This document describes the components in our kit and how to use them. In many cases the
components are identical to those described in The Book and in others they are slightly different. In
particular we have added wires with pin connections so that you will not need to use a soldering
iron. Where there are differences, they are explained with examples. In all cases we highlight known
pitfalls and problems.

The photographs in this document are taken whilst developing the code and this document so are a
good representation of the real thing working.

The code examples in this document are all available as a download from our website
www.easyDAQ.co.uk

We also document how to use a PC or Mac™ instead of a Raspberry Pi™ as a development platform.
See section 3.10 Installing Thonny on Windows™.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 5 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://hackspace.raspberrypi.org/books/micropython-pico
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

1.1. Kit component list:

Table 1. Component list.

Item

Description

Qty.

Raspberry Pi Pico with soldered headers (OPTIONAL)

MB-102 Breadboard

LEDs. 1 of each of Red, Yellow, Green, Blue, White

Resistors 10 x 330R, 2 x 1Meg Ohm

Switch/button

Sounder without oscillator

12C, 2x16 char LCD display

3V to 5V level shifter

O NV B W|N|F

HC-SR501 PIR module with wires

[ER
o

Link wires M-M (Male to Male)

[any
[EnY

Link wires M-F (Male to Female)

[ERY
N

10k linear potentiometer

[EEN
w

WS2812 RGB LED strip (8 LEDs) with wires

=
S

EasyDAQ Notes and examples link card

Version 1.1 23" April 2022

© GreenHalse Electronics Ltd

Email: sales@easydag.co.uk
Web: www.easydag.co.uk

Page 6 of 44

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Table 2. Pictures of individual components.

MB-102 Breadboard Resistors

Front view
7N RO T e SRR D S
i g :

Sounder

Button

Rear view

12C, 2x16 char LCD Display

Level Shifter PIR module 20 Link wires M-M

~

10 Link wires M-F 10k linear potentiometer WS2812 RGB LED

Optional The EasyDAQ-Kit 1+ is supplied with a pre soldered Raspberry Pi Pico with pre-loaded
MicroPython.

74
LR SR L.

'Raspberry Pi Pi

@8

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 7 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Getting started
1.2. Soldering

We have devised this kit so that there is no soldering required. Our EasyDAQ-Kit1+ even provides a
Pi Pico with pins soldered, loaded with MicroPython and tested. Alternatively, Chapter 1 of The Book
gives a good introduction to soldering which will be needed to attach the Pin Headers of your Pi
Pico. If you don’t have a soldering iron then we suggest that you either buy our EasyDAQ-Kit1+ or a
Pi Pico with the pre-soldered Headers, Pimoroni stock them. See
https://shop.pimoroni.com/products/raspberry-pi-pico?variant=32402092326995 . Alternatively,

find a friendly electronics engineer to do it for you as soldering is a bit of an art which requires a
reasonable amount of practice to master. Most technical colleges and universities are likely to have
someone willing to help with this too.

1.3. The development Environment
The Book is based around using a standard Raspberry Pi™ connected to your Raspberry Pi Pico™ to
develop code using Thonny and the IDE (Integrated Development Environment). Although the
Raspberry Pi has sold in the millions there are many more PCs and MACs in the world and it is also

possible to run Thonny on a Windows™ or Linux PC or on a MAC™.

For installation on Windows™ see section 3.9 Installing Thonny on Windows 7

Remember. Once the MicroPython has been loaded onto the Pi Pico then you will no longer need to
hold down the Boot button when plugging in the Pi Pico.

Chapters 2 and 3 of The Book will get you started using Thonny and MicroPython and so we will skip
straight to the electronics projects.

Note. If Thonny loses contact with the Pi Pico it may be that the Pi Pico is busy. Try pushing the
“Stop” Icon a couple of times to try to interrupt the Pi Pico. If that fails then try unplugging the USB
connection to the Pi Pico, wait a few seconds, plug it back in, wait a few seconds for the PC’s
operating system to recognise the Pi Pico then press the Thonny “Stop” icon again. This should re-
establish a connection. We have found that you may have to repeat this procedure a couple of
times. Longer delays seem to help.

Once you get used to the Thonny — Pi Pico IDE the problem of losing communication reduces.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 8 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://shop.pimoroni.com/products/raspberry-pi-pico?variant=32402092326995

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

2. Projects
2.1. Flashing LEDs

The following experiment relates to pages 51 and 52 of The Book.

LEDs are wonderful devices that are increasingly lighting our world. If treated carefully they are
more efficient and longer lasting than all the current alternatives®. LEDs are very easy to use,
particularly if raw efficiency is not required such as their use as an indicator in an electronic circuit.
All that is needed is a resistor to limit the current that flows through the LED.

We include 5 LEDs in our kit, Red, Green, Blue and White. These LEDs have a maximum operating
current of 20mA but will be plenty bright enough at just 4mA or even 2mA.

If you are familiar with LEDs then skip section 2.2.
2.2. A quick aside; lighting up an LED

Experiment 1. Lighting an LED.
Use the diagram Pico-R3-A4-Pinout.pdf from Raspberry Pi™ to help you with the wiring connections.

W Power | uarTo Tx § 12c0SDA | sPioRx - GRO. () veus |
M Ground | uARTO RX § [2c0SCL § sPiocsn § 6 3 INEEE
Bl UART/ UART (default) Y oo |
B cron | 21 SDA § sPiosCK | GP . 7
W soc i2ciscL} spioTx | 52 £ avs(oun) |
B sP1/SPi(defau) | UARTI T} 12c0SDA § sPioRX Be 2 3
B 120 /12 (default) [uaRTa RX § 12c0sCL § spiocsn | 7 . E24 ep2s | Apc2 |
. £ oNo | AGND |
B oevug | 12¢1 SDA § sPiosck | . || _apci | i2ciscL |
| 121 SCL§ SPIOTX | . | _Apco | 12C1SDA |
| UART1 TX } [2C0SDA § SPI1RX | .
| UART1 RX § [2c0SCL § sPiicsn § .
.
| 1201 SDA § sPi1 scK § . | i2coscL |
| 12C1SCL § SPI1TX | . | 12C0 SDA |
[UARTOTX § 12C0SDA § sPI1RX | .] spioTx | i2ci sl |
| UARTORX § 12C0 SCL § SPI1 Csn § . 2 1] spiosck | 1261 SDA |
. £ ono |
| 1201 8DA § Pl scK | . 2 | siocsn | 1260 ScL | UARTO RX |
[12c1scL§ sPriTX | . | _spioRx | 1260 SDA | UARTOTX |

t Raspberry Pi

Figure 1. Raspberry Pi Pico Pinout

The Pi Pico board has numerous functions on many of the pins so the same pin is often referenced
by different names. For example, Pin 1 of the board is known as GPO, SPI0O_RX, 12C0_SDA and
UART_TX. To make matters even more complex the software will often reference a Pin in the fashion
“led1 = Pin(11, Pin.OUT)” but in this case it is referring to GP11 not Pin 11 of the board.

If you are not familiar with electronics you can set up the following circuit just to light up an LED. We
can use the Pi Pico to act as a power supply. This is actually just a connection to the power that is
available from a USB connection.

1 Excepting the sun of course. But controlled thermo-nuclear power is a bit beyond our current ability lighting
wise ©.
© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 9 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Figure 2. Lighting a white LED.

For this experiment:
1). Plug your Pi Pico into the breadboard so that the USB connector is in the leftmost
position as shown in Figure 2.
2). Use a black wire between pin 38 of the Pi Pico and the lower blue rail
3). Use a red wire between pin 40 of the Pi Pico and the upper red rail
4). Connect a 330 Ohm resistor (330R) between the lower blue rail and the upper bank of
vertical connections as shown in Figure 2. You will need to bend 10mm of the wire of the
resistor down at the end to poke into the holes in the breadboard.
5). Connect an LED between the other end of the resistor and the upper red rail with the
longest pin of the LED going to the top rail.
6). With the PC powered up; plug in a USB cable between your PC and the Pi Pico™ and your
LED should light?.

Figure 3. Bending legs on a resistor.

Note. When bending the legs of a component like a resistor it is best to make sure that the joint
between the wire and the body of the resistor is not strained. It is possible to break the leg away
from the component or fracture it connection to the resistive element inside. Hold the wire both
sides of the bend wile forming it.

Possible problems:

If the LED does not light there are a few possible problems:
1). Is the LED on the Pi Pico illuminated or flashing? If not, the PC may not be powering the
USB cable.
2). Check the wiring is as shown in Figure 2. Page 49 of The Book gives a good explanation of
how the breadboard is wired internally.

2The Pi Pico requires a USB-A to USB-micro-B cable to connect from the Raspberry Pi, PC or MAC to PI Pico.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 10 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

3). The LED may be in the wrong way around. Don’t worry. This will not damage the LED. Just
take it out and make sure that the long lead is in the top red rail.

Once you have it working, try swapping the LEDs and light up different colours. You could also try
lighting up several LEDs.

For the mathematics of an LED circuit see section 3.1 The mathematics of driving LEDs (You can skip
this bit if you like)

2.3. Lighting up an LED using the Pi Pico
Experiment 2. Lighting up an LED using the Pi Pico.

Page 52 and Figure 4.4 of The Book show how to link your LED to the Pi Pico. You can choose any
colour LED you like. The long pin will be connected to a 330 ohm resistor which in turn is connected
to pin 20 (GP15) of the Pi Pico. The short pin of the LED connects via a black wire to the Ov rail
created by connecting a black wire between pin 38 (GND) of the Pi Pico and the top blue rail of the
breadboard.

Load up the Blink.py software as described in The Book. It would be a good idea to run this program
again to confirm that the on-board LED is still controlled. Now modify to control of the LED from the
internal to the external LED.

If all goes well you are now controlling an LED from the Pi Pico. It really is the “Hello World” of the
Microcontroller environment.

If there are any problems then check the wiring and the orientation of the LED. If that doesn't help
check the modification from internal to external LED in the software carefully.

Experiment 3. Sequencing 5 LED:s.

(Page 53 challenge)

As there are 5 LEDs in the kit, how about trying to control all of them, each on a separate pin, to
make a light show.

The following code example defines 5 LEDs on 1/O pins 11 to 15 respectively. A counter is declared
which will be used to cycle between the LEDs. When the timer triggers, “sequence(timer)” turns the
currently selected LED on and the previous LED off then increments the counter.

Create a new file for this program. In Thonny, select File > New and rename it something like
“Sequential_LEDs_code_example.py”.

Copy or write the following code in the code space: Note. The file name for this program in our
download is “LED_Sequence.py”. The names of the files are given in the headers of the programs we
have supplied.

Sequential LEDs code example “LED_Sequence.py”
Nigel .J. Halse 3rd April 2021

from machine import Pin, Timer
ledl = Pin(11, Pin.OUT) # Give the LEDs 5 port names

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 11 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

led2 = Pin(12, Pin.OUT)
led3 = Pin(13, Pin.OUT)
led4 = Pin(14, Pin.OUT)
led5 = Pin(15, Pin.OUT)
counter =0

LEDs = [led1,led2,led3,led4,led5]
timer = Timer()

def sequence(timer):
global counter
LEDs[counter % 5].on()
LEDsJ[(counter-1) % 5].0ff()
counter = counter + 1

Set up a timer interrupt

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Declare a variable

Put the LEDs in a list

Define a function for dealing the timer interrupt
Indicate that the global variable is required

Turn on an LED

Turn off the previous LED

Increment the counter

timer.init(freq=2.5, mode=Timer.PERIODIC, callback=sequence)

Now rewire the breadboard as shown in Figure 4. Sequencing 5 LEDs using the wiring table and

Figure 1. Raspberry Pi Pico Pinout to check.

Figure 4. Sequencing 5 LEDs

Table 3. Wiring table for Experiment 3

Wire Function Wire From To M-M or
number Colour M-F
1 ov Black Pi-Pico GND [pin 38] Breadboard -Bus M-M
2 Red LED signal Red Pi-Pico GPIO(11) [pin 15] Red LED Anode (+ive) M-M
3 Yellow LED signal Yellow Pi-Pico GPIO(12) [pin 16] Yellow LED Anode (+ive) M-M
4 Green LED signal Green Pi-Pico GPIO(13) [pin 17] Green LED Anode (+ive) M-M
5 Blue LED signal Blue Pi-Pico GPIO(14) [pin 19] Blue LED Anode (+ive) M-M
6 White LED signal White Pi-Pico GPIO(15) [pin 20] White LED Anode (+ive) M-M
7 330R resistor - Red LED Cathode (-ive) Breadboard -Bus -
8 330R resistor - Yellow LED Cathode (-ive) Breadboard -Bus -
9 330R resistor - Green LED Cathode (-ive) Breadboard -Bus -
10 330R resistor - Blue LED Cathode (-ive) Breadboard -Bus -
11 330R resistor - White LED Cathode (-ive) Breadboard -Bus -

Note. The orientation of the LEDs has changed. The negative ends of the LEDs point to the top

negative bus. Using the coloured wires helps. Remember that pin18 on the Pi Pico is a GND pin, not
an /0 pin, so there is a space between the green and blue wire in the connections to the Pi Pico.

Version 1.1 23" April 2022

© GreenHalse Electronics Ltd

Email: sales@easydag.co.uk
Web: www.easydag.co.uk

Page 12 of 44

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Also... Try adjusting the “freq=". This value is in Hz (cycles per second). At 10Hz it is obviously faster.
At 100Hz it is manic. At 1000Hz it is just a blur. All the LEDs appear to be on at the same time
because the human eye can’t respond fast enough. Also, don’t include “Hz”. MicroPython will not
understand.

2.4. Adding a button input.
Now we are on Page 53 of The Book.

Experiment 4. Button LED and Pi Pico

The button we have provided in the kit has 2 pins rather than 4. The pins are longer and more likely
to make a good contact in the breadboard than 4 pin versions. It is also easier to get the connections
right as there are only 2 of them... :-)

Figure 5. 2 wire button.

Using the button:

Figure 6. LED and button wiring.
Note position of the button.

Figure 7. LED will stay lit for 2 seconds after releasing the button.

You are now all set up for the rest of Chapter 4.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 13 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

2.5. The Buzzer.
Experiment 5. Passive sounder using the Processor

We are now at Chapter 5 page 58 of The Book. The traffic lights project is a good example of
multiple inputs and outputs doing different functions. The Piezoelectric buzzer (Piezo) provided in
this kit is not “active”. It is a standard passive device which makes it a lot more useful as we shall see
in section 3.6 Piezo sounder as a knock sensor.

To start with let’s just make a noise.

This sounder will have a peak resonance at about 4000Hz (4kHz). We can make lower and higher
pitches but it will be loudest around this frequency.

All we need to do is connect 1 pin of the sounder to a pin we are controlling and the other to Ov. In
this case we will use 1/0 pin 12 and oscillate the pin high and low at 4000 cycles per second.

smes smmaw Eas AR esan
ll*‘l - dadaw waaa

e N

8 & :
Arrveweny

Figure 8. Sounder wiring.
The following code example will produce a 4000Hz tone from the sounder.

Basic Tone generator code example "Tone 1.py"
Using 1 pin to control the sounder.
N.J.Halse 6rd April 2021

from machine import Pin, Timer
Sounderl = Pin(12, Pin.OUT) # Give the ports names
timer = Timer()

def Sounder(timer): # Define a function for dealing with the timer interrupt
Sounderl.toggle()

Set up a timer interrupt to double the frequency required on the sounder
timer.init(freqg=8000, mode=Timer.PERIODIC, callback=Sounder)

Try changing the “freq” value in the last line in the code. A piezo sounder is not a brilliant speaker. It
really is best at its resonant frequency so there are a lot of over tones at higher frequencies. Also,
the processor will not be able to keep up eventually. Lower tones will be quieter but less rough.

For a louder sounder see 3.1 Louder sounder in the More fun section.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 14 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Experiment 6. Passive sounder using the PIO

The above method of controlling the sounder uses up a significant amount of processor resources
that could be usefully employed elsewhere in your code. The Pi-Pico has a very powerful feature as
described in Appendix C of The Book and chapter 3 of the “rp2040-datasheet”. That is
“Programmable I/0”. Basically 8 spare tiny processors that can be dedicated to controlling I/O pins.
Here we use 1 of the PIO state machines to generate the tone.

PlO based tone generator "PIO_Tone.py"
Nigel J. Halse 7th April 2021

import time
from rp2 import P10, asm_pio

from machine import Pin

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.

@asm_pio(set_init=rp2.PIO.OUT_LOW) # Let the MicroPython compiler know that the
following is a P10 machine code definition
def tone():

wrap_target()

set(pins, 1) # 1 instruction

set(pins, 0) # 1 instruction plus jump to start

wrap()

Instantiate a state machine with the tone program, at 8000Hz, with set bound to Pin(12).
This will generate a 4kHz square wave on pin 12
sml = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(12))

def Buzzer(value): # A change of name to make the program easier to read
sml.active(value)

1 second tone bursts

while 1: # A continuous loop
Buzzer(1) # Turn on the tone
time.sleep(1) # Wait for a second
Buzzer(0) # Turn off the tone
time.sleep(1) # Wait another second

For a bit more fun with the sounder see Rising pitch using PIO and sounder in section 3.4.

2.6. Traffic light.
We are now at page 58 of The Book.

Experiment 7. Traffic light with passive sounder

The traffic lights project is where we start to get the Pi Pico to do some interesting things in The
Book.

Work your way through chapter 5 of The Book. The button in your kit has 2 pins, not 4. See Figure 9
on page 17 for the layout that you will use with your kit. You will not be building the page 61 circuit.
The sounder in the kit is passive, so it will only click instead of buzzing. So, use the instructions below
to convert it to buzz.

To use your kit sounder, you will need to make some changes to the program from the book. You
can copy and paste the whole program from below*, or you can do it manually ...

e Remove “buzzer = machine.Pin(12, machine.Pin.OUT)”

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 15 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

e Make sure that “from rp2 import P10, asm_pio” And “from machine import Pin” are included as an
import
e Add the following definitions:

def tone():
wrap_target()
set(pins, 1) # 1 instruction
set(pins, 0) # 1 instruction plus jump to start
wrap()

and

sml = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(12))

def Buzzer(value): # A change of name to make the program easier to read
sml.active(value)

1. Inthe body of the program substitute “Buzzer(1)” for buzzer.value(1) and Buzzer(0) for
buzzer.value(0)

*The code now looks like this:

Traffic lights with pedestrian crossing sounder "P1O_Trafic_lights 1.py"
From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO" Madified to use a PIO driven sounder
by Nigel J. Halse 7th April 2021

import machine

import utime

import _thread

from rp2 import P1O, asm_pio
from machine import Pin

led_red = machine.Pin(15, machine.Pin.OUT)

led_amber = machine.Pin(14, machine.Pin.OUT)

led_green = machine.Pin(13, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN, machine.Pin.PULL_DOWN)

global button_pressed
button_pressed = False

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.
@asm_pio(set_init=rp2.PIO.OUT_LOW) # Let the MicroPython compiler know that the following is a PIO machine code
definition
def tone():

wrap_target()

set(pins, 1) # 1 instruction

set(pins, 0) # 1 instruction plus jump to start

wrap()

Instantiate a state machine with the tone program, at 8000Hz, with set bound to Pin(12).
This will generate a 4kHz square wave on pin 12
sm1l = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(12))

def Buzzer(value): # A change of name to make the program easier to read
sml.active(value)

def button_reader_thread():
global button_pressed
while True:
if button.value() == 1:
button_pressed = True
utime.sleep(0.01)
_thread.start_new_thread(button_reader_thread, ())

while True:
© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 16 of 44
Web: www.easydaq.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

if button_pressed == True:
led_red.value(1)
for i in range(10):
Buzzer(1)
utime.sleep(0.2)
Buzzer(0)
utime.sleep(0.2)
global button_pressed
button_pressed = False
led_red.value(1)
utime.sleep(5)
led_amber.value(1)
utime.sleep(2)
led_red.value(0)
led_amber.value(0)
led_green.value(1)
utime.sleep(5)
led_green.value(0)
led_amber.value(1)
utime.sleep(5)
led_amber.value(0)

The program cycles through the standard red, yellow green traffic light sequence until the button is
pressed. When the button is pressed, the next time the LEDs return to red it will sound the tone 10
times before continuing the sequence.

Figure 9. Traffic light with PIO driven sounder.

For a slightly improved version of the code see section 3.5 Slightly improved pedestrian crossing

Also, the sounder can be used as an input device. With the right pre-amplification they can function
as a microphone but this is beyond this current kit. However, it is entirely possible to make a knock
sensor. See section 3.6 Piezo sounder as a knock sensor

You are now good to go all the way through to Chapter 7 “Burglar alarm” of The Book.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 17 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

2.7. PIR Sensor Burglar alarm.
Experiment 8. Testing the PIR.

The PIR sensor is a very interesting device. The Book gives a good overview. See
https://lastminuteengineers.com/pir-sensor-arduino-tutorial/ 3 for an overview of how these

sensors work .

The PIR we have provided is fitted with a 3-wire connector to make it easier for you to use.

Wire colour Function

Red +V. Usually +5v. Minimum +4.5V. Maximum 12V
Blue Signal. OV = no detection, +3V = detection.

Black 0V (GND)

Testing the functionality for the PIR unit is very easy. If it detects a moving warm object the output
will go from OV to +3V. To see this happen we only need to apply +5V and OV from the USB on the Pi-
Pico and drive an LED via a 330R resistor from the blue, signal, wire to OV. See Figure 12. Testing the
PIR.

Time delay Sensitivity

0V Signal +V Figure 11. PIR controls

Figure 10 PIR with wires.

For testing purposes, it is best to set the on-board pre-sets to maximum sensitivity and shortest time
delay as shown in Figure 11. PIR controls.

These sensors appear to take a minute or two to settle after powering up. They appear to become
more sensitive to movement after they have calibrated to the environment.

3 Try pasting the URL into a browser if the link doesn’t open directly from the page.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 18 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://lastminuteengineers.com/pir-sensor-arduino-tutorial/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Figure 12. Testing the PIR.

See Figure 13. Burglar alarm circuit. below, for our version using the wired PIR.
Experiment 9. Using the PIR

Figure 13. Burglar alarm circuit.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 19 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Experiment 10 PIR Burglar alarm with PIO driven sounder

The burglar alarm will work with the passive sounder and the code given on page 88 The Book but
the pitch of the sounder is a bit low. The following code shows a simple way to implement a 4kHz
tone in the code using the “utime.sleep_us(100)” function instead of “utime.sleep_ms(3)“ and increasing the
number of iteration in the loop to from 25 to 750.

PIR Burglar alarm with modified software driven sounder “Burglar_alarm_with_passive_sounder.py”
From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO" Modified to use a PIO driven sounder
by Nigel J. Halse 8th April 2021

import machine
import utime

sensor_pir = machine.Pin(28, machine.Pin.IN, machine.Pin.PULL_DOWN)
led = machine.Pin(15, machine.Pin.OUT)
buzzer = machine.Pin(14, machine.Pin.OUT)

def pir_handler(pin):
utime.sleep_ms(100)
if pin.value():
print("ALARM! Motion detected!")
for i in range(50):
led.value(1)
forjin range(750): # 750 cycles
buzzer.toggle()
utime.sleep_us(100) # Delay to generate approximately 4kHz
led.value(0)
utime.sleep_ms(75)

sensor_pir.irg(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

while True:
led.toggle()
utime.sleep(5)

An alternative version of the code using the PIO is also shown in section 3.7 Burglar alarm with PIO
driven sounder.

NOTE. Thonny can’t stop the code when the processor is executing a long interrupt. Thonny will
generate up with a nice warning “Device is busy or does not respond....” and should exit the code
when the interrupt completes.

2.8. Potentiometer and ADC.
Experiment 11. Testing the potentiometer.

The potentiometer we supplied in the kit can be plugged directly into the board.

We can test how the potentiometer works with this simple circuit. See Figure 14. Testing the
potentiometer.

Again, we are only using power from the Pi Pico. Wind the knob from low to high and the LED should
dim and brighten accordingly. But we find that the LED only turns on when it gets to around the half
way mark f the potentiometer. If you replace the Blue LED with a Red Led it will extinguish at a lower
position on the potentiometer. This is because the Red LED has a lower “Forward drop” (Vf) than the
Blue LED. Roughly 1.8V for the Red LED and 3.4V for the Blue LED. For an LED the forward drop is the
voltage at which the diode begins to light up.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 20 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

/

AT

Figure 14. Testing the potentiometer.

This problem can be overcome by driving the LED in PWM mode. This is covered in Chapter 8 of The
Book.

Experiment 12. PWM controlled LED

The resulting circuit for the PWM controlled LED looks like this:

1\

LR LU
LR LR

‘o i, W5 NI AD VW0t AP 54 —
FEemER cmmEeE amww - P
cemEEs ama=w =oas =aaa

The program for it is on page 102 of The Book and is wonderfully simple for what it is doing.

For a bit of extra fun check out our example with control of both the LED and the sounder in section
3.8 Potentiometer PWM LED and PIO tone.

We are good now till Chapter 10 of The Book. Have fun with data logging on the way there.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 21 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

2.9.12C and LCD display.
Experiment 13. 12C LCD display
At last, we can now do a real “Hello World” program.

The LCD supplied on our kit is only set up for I2C communications and operates at 5V so we need a
level shifter to convert between the 3V signals of the Pi-Pico to the 5V signals of the 12C LCD display.
Please be careful to wire this circuit correctly as applying a 5V signal to the Pi-Pico could damage it
beyond repair. There are two pictures and a table to check the wiring against:

See Figure 15. 12C LCD display. and Figure 16. Level shifter details.

“ o oo R

R
-

“d oW

Figure 15. 12C LCD display.

LR

Figure 16. Level shifter details.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 22 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Follow the wire colours to wire up the level shifter and display correctly and check against the table

below:

Table 4. 12C LCD Display circuit wiring guide.

Wire Function Colour | From To M-M

number or M-F
1 ov Black Pi-Pico GND [pin 38] Breadboard -Bus M-M
2 +USB (5V) Red Pi-Pico VBUS [pin 40] Breadboard +Bus M-M
3 +3V3 (3.3V) Orange | Pi-Pico 3V3(OUT) [pin 36] | Level shifter +3V M-M
4 +5V Red Breadboard +Bus Level shifter +5V M-M
5 12C SDA (3.3V) Blue Pi-Pico 12C0 SDA [pin 1] Level shifter B2 M-M
6 12C SCL (3.3V) Purple | Pi-Pico 12C0 SCL [pin 2] Level shifter A2 M-M
7 LCD OV Black Breadboard -Bus LCD GND M-F
8 LCD 5V Red Breadboard +Bus LCD Vcc M-F
9 I12C SDA (5V) Blue Level shifter B1 LCD SDA M-F
10 I2C SCL (5V) Purple | Level shifter Al LCD SCL M-F

To use this display, we need to depart a bit from The Book and use an APl and library from

https://github.com/T-622/RPI-PICO-I12C-LCD.

Follow the instructions given in the link above to load 3 files onto your Pi-Pico then run

“pico_i2c_lcd_test.py” to test your display. One of the test screens is shown in Figure 15. 12C LCD

display.

If you look through the file “Icd_api.py” you will find a very comprehensive list of commands for the
LCD display. A summary of the LCD commands is given in section 3.11 LCD_API Commands.

Ok, now we can finally write that “Hello world” program ©.

Displaying 2 lines of text on a 2 x 16 LCD display "LCD_Hello_World.py"
Using "lcd_api.py" and "pico_i2c_lcd_test.py" to drive the display using 12C

controlling a PCF8574 port expander
Nigel J. Halse 09/04/21

import machine

from machine import 12C

from Icd_api import LcdApi
from pico_i2c¢_lcd import 12cLcd

I2C_ADDR = 0x27
12C_NUM_ROWS =2
I2C_NUM_COLS =16

i2c = 12C(0, sda=machine.Pin(0), scl=machine.Pin(1), freq=400000)
lcd = I2cLcd(i2c, I2C_ADDR, 12C_NUM_ROWS, 12C_NUM_COLS)

Icd.clear()
lcd.putstr("Hello World")
lcd.move_to(0,1)
lcd.putstr("l Love You")

Get the API
Library for the PCF8574 12C port expander
as a HD44780 LCD display controller

Address of the PCF8574 12C port expander
Number of rows (1 or 2)
Number of columns (16 or 20)

Declare the 12C port and name it
Declare the LCD and control it using the specified 12C

Clear the display and home the cursor position
Display the message

Select the second line

Display another message

© GreenHalse Electronics Ltd

Version 1.1 23" April 2022

Email: sales@easydag.co.uk

Page 23 of 44

Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://github.com/T-622/RPI-PICO-I2C-LCD

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

The Thermometer program becomes:

Reading the internal thermometer and displaying as 1 line of text on a 2 x 16 LCD display "12C_LCD_Temperature.py"
Using "lcd_api.py" and "pico_i2c_lcd_test.py" to drive the display using 12C

controlling a PCF8574 port expander
Nigel J. Halse 09/04/21

import machine

import utime

from machine import 12C

from Icd_api import LcdApi
from pico_i2c_lcd import 12cLcd

I2C_ADDR = 0x27
12C_NUM_ROWS =2
I2C_NUM_COLS = 16

i2c = 12C(0, sda=machine.Pin(0), scl=machine.Pin(1), freq=400000)
lcd = 12cLcd(i2c, I2C_ADDR, 12C_NUM_ROWS, 12C_NUM_COLS)

adc = machine.ADC(4)
conversion_factor = 3.3 / (65535)

while True:
reading = adc.read_u16() * conversion_factor
temperature = 25 - (reading - 0.706)/0.001721
Icd.clear()
out_string = "Temp: " + str(temperature)
lcd.putstr(out_string)
utime.sleep(2)

2.10.
Experiment 14. PIO controlled RGB LED strip

Get the API

Library for the PCF8574 12C port expander
as a HD44780 LCD display controller

Address of the PCF8574 12C port expander
Number of rows (1 or 2)

Number of columns (16 or 20)

Declare the 12C port and name it
Declare the LCD and control it using the specified 12C

Define the ADC to use
Create the conversion factor between the ASC output
and Deg. C.

Get the temperature data

Convert to Deg. C.

Clear the display and home the cursor position
Form the message

Display the message

Wait 2 seconds before doing it again

WS2812 Controllable RGB LED strip

The WS2812 strip supplied in this kit has been fitted with wires to make it easier to use.

Signal ov +V

Figure 17. WS2812 RGB LED strip

Each RGB LED draws approximately 50 mA at 5 V with red, green, and blue at full brightness. So
when all the LEDs are fully illuminated (all white) the current taken from the USB port is quite
considerable (400mA for the 8 RGB LEDs) so you may see flickering or even resetting of the USB port.

The following code has reduced maximum white amplitude and has added code to cycle the display

to make it a bit more interesting:

Cycling RGBW Sequence on 8 WS2815 RGB LEDs with reduced amplitude “WS2812 RGB Cycle.py”

to minimise ripple due to high currents.

From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO"

Modified by Nigel J. Halse 9th April 2021

import array, utime
from machine import Pin

© GreenHalse Electronics Ltd

Version 1.1 23" April 2022

Email: sales@easydag.co.uk

Page 24 of 44

Web: www.easydaq.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

import rp2
from rp2 import P10, StateMachine, asm_pio

Configure the number of WS2812 LEDs.
NUM_LEDS =8

@asm_pio(sideset_init=PIO0.OUT_LOW, out_shiftdir=PIO.SHIFT_LEFT,autopull=True, pull_thresh=24)
def ws2812():
T1=2
T2=5
T3=3
label("bitloop™)
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]

Create the StateMachine with the ws2812 program, outputting on Pin(0).
sm = StateMachine(0, ws2812, freq=8000000, sideset_base=Pin(0))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(l)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("l", [0 for _in range(NUM_LEDS)])
while True:
print("blue")
for j in range(0, 255):
foriin range(NUM_LEDS):
arfi] =
sm.put(ar,8)
utime.sleep_ms(10)

print(“red")
for j in range(0, 255):
foriin range(NUM_LEDS):
arfi] = j<<8
sm.put(ar,8)
utime.sleep_ms(10)

print("green")
for j in range(0, 255):
foriin range(NUM_LEDS):
arfi] = j<<16
sm.put(ar,8)
utime.sleep_ms(10)

print("white") # reduced maximum amplitude
for j in range(0, 64):
foriin range(NUM_LEDS):
arfi] = (j<<16) + (j<<8) + |
sm.put(ar,8)
utime.sleep_ms(40) # longer delay time per level

Figure 18. Running WS2812 LED strip.

See section 3.9 More WS2812 examples in More fun. for random and rainbow sequences.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 25 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

3. More fun.
A collection of additional notes, code and ideas for the kit.
3.1. The mathematics of driving LEDs (You can skip this bit if you like)

We can use the Ohm’s Law, Kirchhoff's voltage and current laws and the characteristics of LEDs to
calculate an appropriate value for the current limiting resistor

VR
From Pi < IR

Pico GPIO +3.3V — AAMA——
| /N N
or supply R oY
Vsuppl \/
supply LED% Vf (LED)
oV

Figure 19. Resistor and LED circuit.

Ohm’s law states that The Voltage across a resistor is equal to the value of the resistor x the current
going through it.

Ohm’sLaw V=IxR
SO,VR=|RXR

Kirchhoff’s current law for the above circuit is simply that any current flowing through the resistor
will also flow through the LED. None can escape.

S0, Ir = liep

Kirchhoff’s voltage law for this circuit means that if we add the voltage across the resistor to the
voltage across the LED, we will get the voltage of the supply:

S0, Vsupply = VR + Vi (LeD)

For the various LEDs in this kit, we have a maximum forward current (I of 20mA and a selection of
forward voltages as given in Table 5 below:

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 26 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Table 5. Forward voltage of LEDs

LED Approximate Notes

colour Forward voltage

Red 1.8V 626nm

Yellow 2.0V 583nm

Green 2.2V 526nm

Blue 3.4V 470nm

White 3.4V A Blue LED under a Yellow
Phosphor looks White*

Note as the frequency of the light emitted from the LEDS goes up (the wavelengths get shorter) then
the forward voltage also goes up. They are intimately linked. It takes more voltage to generate a
photon blue light than it does to generate a photon of red light.

The current limiting resistor we have supplied for the LEDs is 330R. So, we can work out the worst-
case current flowing through the LED:

If we look at the case for the Red LED being operated from the 5V UB supply®:

Vsupply = VR + Vi(LED)

Re arranging gives:
VR = Vsupply - V¥(LED)

Vg =5V -1.8V =3.2V

From Ohm’s law we can then get the current through both the resistor and the LED:

IR = ILED = VR/R = 3.2V/330R = 0.0097A or 9.7mA

This is well within the capability of the LEDs.

Can you work out the minimum current? i.e., when a blue or white LED is being driven from a 3.3V
GPIO pin? Ok, it’s a trick question. © The LED does still light and you would need a bit more in-depth
information on the LEDs to see why. It is safe to say that the current is quite small but the LEDs are
working well®.

Just for fun we measured the voltage drop across the resistor when driving a blue LED from 3.3V to
be about 0.5V giving 2.8V across the blue LED and a current of 1.5mA.

4To the human eye, red light plus green light looks like yellow light. Some of the blue light that is being used to
energise the yellow phosphor escapes the device and is mixed with the yellow light of the phosphor. So we see
what we think is red plus green and blue light at the same time and perceive this as white.

5 This is the worst case as it produces the highest voltage across the limiting resistor.

6 Just for fun we measured the voltage drop across the resistor when driving a blue LED from a GPIO pin at
3.3V to be about 0.5V. This gives 2.8V across the blue LED and a current of 1.5mA.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 27 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

3.2. Anatomy of an LED.

The now humble LED is an incredible piece of technology

. . . . Flat in rim
that utilises advanced physics and chemistry for their 4
. Anode Cathode
operation. Positive Negative
+ive 1 -ive

Yet they are relatively to use. We need to supply them
with a current such that the Anode is positive, the
Cathode is negative and sufficient voltage to overcome
the internal voltage drop inherent in diodes. If these
conditions are met then the LED will light.

Short Leg

The LEDs in this kit have an Anode or positive side with a Long Leg
longer leg. The Cathode or negative side has a shorter leg Symeol _DI_
and a flat in the rim.

3.3. Louder sounder
Experiment 15. Louder sounder

These simple devices may not be Hi-Fi but can make quite a lot of noise. They can operate at up to
30V Pk-Pk (Peak to Peak) and in the first example we are only applying 3V Pk-Pk from the controlling
pin. To make a louder signal we could use an amplifier but there is a simple trick we can use to
double the 3V Pk-Pk signal to 6V Pk-Pk. Doubling the voltage will more than double the energy

available to the sounder.

If instead of taking one end of the sounder to OV we connect it to another pin and make that second
pin go down when the first pin goes up and visa-versa. When we do this the voltage signal as seen by

the sounder is actually doubled. Connect the sounder as shown below:

- - e s - e Eeow - - . A a a Ao

- - -
- .m .. T) P - b a4 - - - 4 -
-
w & - =
LR R R R R RN
A

v e) LR - . L
Ll Gty U L

b v)."\ AP AR

.......

ammce camas «
AammsE amE=w

Figure 20. Wiring for louder sounder.

The sounder is now connected between 1/0 pins 12 and 13. Now enter the code below:

© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 28 of 44

Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Loud Tone generator code example “Tone 2.py”
Using 2 pins to control the sounder. Doubles the voltage and more than doubles the sound level
Nigel J. Halse 6th April 2021

from machine import Pin, Timer

Sounderl = Pin(12, Pin.OUT) # Give the ports names
Sounder2 = Pin(13, Pin.OUT) # The second sounder connection
button = Pin(14, Pin.IN, Pin.PULL_DOWN) # The button input is pulled low

internally. Pressing the button will
make the input go high if the other end
if the switch is at +V

Toggle =0 # Declare a variable
timer = Timer() # rename “timer()”
def Sounder(timer): # Define a function for dealing with the
timer interrupt
global Toggle # Indicate that the global variable is
required
if Toggle == 1:
Sounderl.on() # Take one side of the sounder high
Sounder2.0ff() # and the other low
Toggle =0
else:
Sounderl.off() # Take one side of the sounder low
Sounder2.on() # and the other high
Toggle =1

Set up a timer interrupt. # double the frequency required on the sounder
timer.init(freq=8000, mode=Timer.PERIODIC, callback=Sounder)

The sounder should be noticeably louder. If in doubt just disconnect either wire from the Pi-Pico and
connect it to the OV rail.

3.4. Rising pitch using PIO and sounder
Experiment 16. Rising pitch sounder

This bit of code uses the PIO to generate a rising pitch on the sounder. Use the wiring configuration
given in Figure 8. Sounder wiring.

P10 based tone generator with rising frequency “Rising PIO_tone.py”
Nigel J. Halse 7th April 2021

import time

from rp2 import PIO, asm_pio
from machine import Pin
Fstart = 2000

Fend = 12000

Finc = 1200

F = Fstart

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.
@asm_pio(set_init=rp2.PIO.OUT_LOW)# Let the MicroPython compiler know that the following is a PIO machine code
definition

def tone():
wrap_target()
set(pins, 1) # 1 instruction
set(pins, 0) # 1 instruction plus jump to start
wrap()

Instantiate a state machine with the tone program, at 8000Hz, with set bound to Pin(12).
This will generate a 4kHz square wave on pin 12
sm1l = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(12))

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 29 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

def Buzzer(value): # A change of name to make the program easier to read

sml.active(value)

Rising tone
while 1: # A continuous loop
sm1l = rp2.StateMachine(1, tone, freq=F, set_base=Pin(12)) # Declare the state machine
Buzzer(1) # Turn on the tone
time.sleep(0.1) # Wait for a time
Buzzer(0) # Turn off the tone
F=F + Finc # increase the frequency
if F > Fend: # restart the sequence
F = Fstart

3.5. Slightly improved pedestrian crossing
Experiment 17. improved pedestrian crossing

This version of the code makes sure that the amber and green LEDs are off at the beginning of the

sequence and waits for a button press rather than continuously cycling:

Traffic lights with pedestrian crossing sounder version 2 "PIO_Trafic_lights 2.py"

From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO" Modified to use a PIO driven sounder

by Nigel J. Halse 7th April 2021

import machine

import utime

import _thread

from rp2 import PIO, asm_pio
from machine import Pin

led_red = machine.Pin(15, machine.Pin.OUT)

led_amber = machine.Pin(14, machine.Pin.OUT)

led_green = machine.Pin(13, machine.Pin.OUT)

button = machine.Pin(16, machine.Pin.IN, machine.Pin.PULL_DOWN)

global button_pressed
button_pressed = False

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.

@asm_pio(set_init=rp2.PIO.OUT_LOW) # Let the MicroPython compiler know that the following is a PIO machine code

definition
def tone():
wrap_target()
set(pins, 1) # 1 instruction
set(pins, 0) # 1 instruction plus jump to start

wrap()

Instantiate a state machine with the tone program, at 8000Hz, with set bound to Pin(12).

This will generate a 4kHz square wave on pin 12
sm1l = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(12))

def Buzzer(value): # A change of name to make the program easier to read
sm1l.active(value)

def button_reader_thread():
global button_pressed
while True:
if button.value() == 1:
button_pressed = True
utime.sleep(0.01)
_thread.start_new_thread(button_reader_thread, ())

while True:
if button_pressed == True:
led_red.value(1)
for i in range(10):
Buzzer(1)
© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk
Web: www.easydaq.co.uk

Page 30 of 44

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

utime.sleep(0.2)
Buzzer(0)
utime.sleep(0.2)
global button_pressed
button_pressed = False
led_red.value(1)
led_amber.value(0) # Make sure the amber and green LEDs are off
led_green.value(0)
utime.sleep(5)
led_amber.value(1)
utime.sleep(2)
led_red.value(0)
led_amber.value(0)
led_green.value(1)
while button_pressed == False: # Wait for button press
pass # Do nothing
utime.sleep(2)
led_green.value(0)
led_amber.value(1)
utime.sleep(5)
led_amber.value(0)

3.6. Piezo sounder as a knock sensor
Experiment 18. Energy harvesting with a Piezo sounder

Can the Piezo drive an input? Yes see https://www.arduino.cc/en/Tutorial/BuiltinExamples/Knock

If it can be done on an Arduino™ it can be done by the Pi-Pico.

First, we can try using the sounder as a transducer or sensor. In this mode the sounder will detect
sound or vibration and convert it to electrical energy.

Put the sounder, a resistor and 2 back-to-back’ LEDs in a circuit as shown in Figure 22. If you tap the
sounder quite hard with your finger nail the 2 LEDs should light up. The sharper the tap, the brighter
the reaction. Note at this point — NO power is being used!! The lights are being lit by the electro-
mechanical reaction of the Piezo crystal inside your buzzer!

R1
3309 Resistor

Sounder AN °

Long Leg=> <Short Leg
= i
LED2
= LI WAVANI
Short Leg— €Long Leg
&

Figure 21 Simple Piezo LED circuit/Energy Harvester.

The resistor is to limit the current to the LEDs and putting 2 LEDs “back-to-back” helps to protect the
LEDs from excessive reverse voltages. LEDs can typically handle up to 5V of reverse voltage but will
be damaged if forced beyond this. In this arrangement the forward conduction voltage of the first
LED protects the second LED from being reverse biased to any significant degree and vice versa. See
Figure 22. Sounder driving 2 LEDs below for a suggested arrangement on the breadboard.

7 This is generally known as reverse parallel. The current generated by the sounder will be oscillating positive
and negatively will flow first through one LED and then the other depending on the direction of the current.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 31 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Knock

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Figure 22. Sounder driving 2 LEDs

This is a form of Energy harvesting - if we attached the sounder to something with a high amount of
vibration we could tap off some of the energy to power other things ”. It is one of the methods used
to make kids trainers light up.

Experiment 19. Using the Piezo sounder as a simple sensor

We can easily detect the voltage generated by the Piezo sounder using the Pi Pico and do something
with it...

Connect the sounder to OV at 1 end and the other via a 330R resistor to GPIO15. Connect an LED to
0V and to GP1014 via another 330R resistor making sure that the cathode of the LED (Short lead)
goes to OV.

The RP2040 processor has small, reversed biased diodes to +3.3V and OV supply rails protecting its
pins. As long at the current into a pin does not exceed the capabilities of the protection diodes, they
will be able to limit the voltages to a safe range for the processor. The 330R between the sounder
and the Pi Pico GPIO limits the current into the pin and out through those protection diodes.

Figure 23. Detecting the sounder on a logic pin.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 32 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

The following code which will monitor the logic level on GPIO15. If it exceeds the threshold fora 1
then turn on the LED for 1 second. The pull down on GPIO15 is to make the input less sensitive to
noise.

Using a Piezo sounder as an input device. “Sounder_sensor_LED.py”
If you tap the sounder it will generate a voltage that can easily be detected.
by Nigel J. Halse 14th April 2021

import machine
import utime

Sounder = machine.Pin(15, machine.Pin.IN, machine.Pin.PULL_DOWN)
led = machine.Pin(14, machine.Pin.OUT)

while True:
led.value(0) # Make sure the LED is off
if Sounder.value() == 1: # Check for a voltage
led.value(1) # Turn on the LED
utime.sleep(1) # Wait for a second

If you tap the sounder, it will be detected by the processor and turn on the LED for 1 second. It is a
very crude way to monitor an analog signal.

Experiment 20. Using the ADC to make the Piezo into more sensitive sensor
If an ADC is used then it is possible to make the input from the sounder more sensitive. This time the

signal is taken in via ADC 0 on GP1026. A 1Meg Ohm resistor from the ADC input to 0V is used to
qguieten down the signal.

2 8

-
AR R R & 5
X e

LA re ety A
S50 ol

-

“ wibe

'lI-.-35

omwww
- . s=

Figure 24. Detecting the sounder using the ADC for more sensitivity.

Enter the code below to improve the performance of the sounder and make a clap sensor.

Using a Piezo sounder as an input device via the ADC. "Sounder_sensor_LED_using ADC.py"
If you click your finger above the sounder the sounder

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 33 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

it will generate a voltage that can easily be detected.
#
By Nigel J. Halse 14th April 2021

import machine
import utime

Sounder = machine.ADC(26)
Threshold = 2000

led = machine.Pin(14, machine.Pin.OUT)

while True:
led.value(0) # Make sure the LED is off
if Sounder.read_ul16() > Threshold: # Check for a voltage
led.value(1) # Turn on the LED
utime.sleep(1) # Wait for a second

The sounder will now respond to a slight tough instead of a tap and it should respond to a hand clap.

Note. Make sure you may have included the 1Meg Ohm resistor. Also it may be necessary to play
around with the value of “Threshold” in the code to allow for differences in the performance of the
Piezo and your ambient noise level.

3.7. Burglar alarm with PIO driven sounder
Experiment 21. Burglar alarm with PIO driven sounder

This version of the code uses the PIO to generate the sounder tone in the same ways as the traffic
lights. Use the same circuit as Figure 13. Burglar alarm circuit. In the code “buzzer = machine.Pin(14,
machine.Pin.OoUT)” needs to be deleted and the rest of the code modified as below.

PIR Burglar alarm with PIO driven sounder. "PIR_LED_and_PIO_tone.py"
From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO" Modified to use a PIO driven sounder
by Nigel J. Halse 8th April 2021

import machine

import utime

from rp2 import P10, asm_pio
from machine import Pin

sensor_pir = machine.Pin(28, machine.Pin.IN, machine.Pin.PULL_DOWN)
led = machine.Pin(15, machine.Pin.OUT)
#buzzer = machine.Pin(14, machine.Pin.OUT)

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.
@asm_pio(set_init=rp2.PIO.OUT_LOW) # Let the MicroPython compiler know that the following is a PIO machine code
definition
def tone():
wrap_target()
set(pins, 1) # 1 instruction
set(pins, 0) # 1 instruction plus jump to start

wrap()

Instantiate a state machine with the tone program, at 8000Hz, with set bound to Pin(12).
This will generate a 4kHz square wave on pin 14
sm1l = rp2.StateMachine(1, tone, freq=8000, set_base=Pin(14))

def Buzzer(value): # A change of name to make the program easier to read
sml.active(value)

def pir_handler(pin):
utime.sleep_ms(100)
if pin.value():

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 34 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

print("ALARM! Motion detected!")
for i in range(50):

toggle()
Buzzer(1)
utime.sleep_ms(50)
Buzzer(0)
utime.sleep_ms(50)
LED.value(0) # Added to ensure LED is off on exit

sensor_pir.irg(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

while True:
led.toggle()
utime.sleep(5)

3.8. Potentiometer PWM LED and PIO tone
Experiment 22. Using the potentiometer to control PWM and PIO.

It just had to be done... This circuit and code will produce a varying LED amplitude and tone
frequency on rotating the potentiometer knob.

The averaging and banding in the code is to get around 2 facts. Firstly, When the PIO is re-declared it
is initially halted and has to be restarted causing a discontinuity in the tone. Secondly, the driving of
the Piezo sounder seems to cause the ADC to produce noisy results so causing the pitch to warble.

The averaging and banding reduce the effects by slowing down changes to the pitch value through a
simple low pass filter and then only changing the pitch if it has changed significantly.

Figure 25. Potentiometer PWM LED and PIO tone circuit

Potentiometer controlling an LED using PWM and the frequency of the sounder using the PIO “Pot_ PWM_LED_and_tone.py”
From "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO" Modified to use a PIO driven sounder
by Nigel J. Halse 8th April 2021

import machine

import utime

import time

from rp2 import P10, asm_pio
from machine import Pin

F_start = 2000
F_end = 12000
F =2000

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 35 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

v_old=0
v_diff = 500
v_ave =0

potentiometer = machine.ADC(26)
led = machine.PWM(machine.Pin(15))
led.freq(1000)

Define the tone program. It has one GPIO to bind to on the set instruction, which is an output pin.
@asm_pio(set_init=rp2.PIO.OUT_LOW) # Let the MicroPython compiler know that the following is a PIO machine code
definition
def tone():

wrap_target()

set(pins, 1) # 1 instruction

set(pins, 0) # 1 instruction plus jump to start

wrap()

while True:

v = potentiometer.read_u16()

led.duty_ul6(v)

F = int(F_start + v * (F_end - F_start)/65535)

v_ave =v_ave + ((v - v_ave)/100)

if (abs(v_old - v_ave) > v_diff):
sml = rp2.StateMachine(1, tone, freq=F, set_base=Pin(12)) # redefine the PIO
sml.active(1) # Turn on the tone
v_old =v_ave
time.sleep(0.1) # Optional loop delay

The commented out last line will change the way the steps due to a change in pitch sound by
slowing them down if reinstated.

There is possibly a way to make the frequency of the PIO state machine change without having to
restart it but we have not found it yet.

3.9. More WS2812 examples
Two more code examples for the WS2812 LED strip. Use the circuit shown in Figure 18. Running
WS2812 LED strip.

3.9.1.Rainbow on W$2812
Experiment 23. Rainbow on WS52812

This experiment produces a very pretty moving rainbow of colours. To do this we set up an array of
colours and cycle through them incrementing an offset each time we cycle through.

RGBW and other colours RGBW Sequence on 8 WS2815 RGB LEDs "WS2812 RGB rainbow.py"
Adapted from "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO"
by Nigel J. Halse 9th April 2021

import array, utime

import random

from machine import Pin

import rp2

from rp2 import P10, StateMachine, asm_pio

Configure the number of WS2812 LEDs.
NUM_LEDS =8
NUM_COLOURS =8

@asm_pio(sideset_init=PIO0.OUT_LOW, out_shiftdir=PIO.SHIFT_LEFT,autopull=True, pull_thresh=24)
def ws2812():
T1=1
T2=4
T3=2
© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 36 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

label("bitloop™)

out(x, 1) .side(0) [T3]

jmp(not_x, "do_zero") .side(1) [T1]
jmp("bitloop") .side(1) [T2]
label("do_zero™)

nop() .side(0) [T2]

Create the StateMachine with the ws2812 program, outputting on Pin(0).
sm = StateMachine(0, ws2812, freq=8000000, sideset_base=Pin(0))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("l", [0 for _in range(NUM_LEDS)])
colours = array.array("l", [0 for _in range(NUM_COLOURS-1)])
colours =[0,65280,16776960,16711680,16711935,255,65535,16777215] # off,Red,Yellow,Green,Cyan,Blue,Magenta, White
while True:
foriin range(NUM_COLOURS): # index offset
for j in range(NUM_LEDS):
x=((i + j) % NUM_COLOURS)
ar[j] = colours[x]
sm.put(ar,8)
utime.sleep_ms(50)

See Rainbow.AVI in the zip file downloaded with this document for a short video of the display
running.

3.9.2.Random colours
Experiment 24. Random colours

This experiment uses a random number to select colours for each of the LEDs in the WS2812 strip.

RGBW and other colours in random Sequence on 8 WS2815 RGB LEDs "WS2812 RGB random.py"
Modified from "GET STARTED WITH MICROPYTHON ON RASPBERRY PI PICO"
by Nigel J. Halse 9th April 2021

import array, utime

import random

from machine import Pin

import rp2

from rp2 import P10, StateMachine, asm_pio

Configure the number of WS2812 LEDs.
NUM_LEDS =8

@asm_pio(sideset_init=PIO0.OUT_LOW, out_shiftdir=PIO.SHIFT_LEFT,autopull=True, pull_thresh=24)
def ws2812():
Ti=1
T2=4
T3=2
label("bitloop™)
out(x, 1) .side(0) [T3]
jmp(not_x, "do_zero") .side(1) [T1]
jmp("bitloop") .side(1) [T2]
label("do_zero")
nop() .side(0) [T2]

Create the StateMachine with the ws2812 program, outputting on Pin(0).
sm = StateMachine(0, ws2812, freq=8000000, sideset_base=Pin(0))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("l", [0 for _in range(NUM_LEDS)])
colours = array.array("l", [0 for _in range(7)])

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 37 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

colours = [0,255,65280,65535,16711680,16711935,16776960,16777215]
while True:
for i in range(NUM_LEDS):
x=(random.randint(0, 7)) # Pick a random number between 0 and 7
arfi] = colours[x]
sm.put(ar,8)
utime.sleep_ms(100)

3.10. Installing Thonny on Windows™

The best way we found to install Thonny on a Windows 7 PC was to use the instructions given at
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Follow the instructions to “Install Thonny” and select “Install Thonny on other operating systems” at
the top of the second page.

Navigate to thonny.org as suggested, download the Windows™ version and install it.

After installing, run Thonny, set you language, leave initial settings as Standard and click on “Let’s

”

go”.

Language: |Eng|ish

Initial settings: | Standard

Thonny - <untitled> @ 1:1 - m] X
File Edit View Run Tools Help

DNEH O% @
<untitled>

1

Shell

>>>

v The same interpreter which runs Thonny (default)
ive Python 3 interp or virtual

Configure interpreter...

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 38 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1
http://www.thonny.org/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Click on the interpreter in the lower right-hand corner. Select “Configure interpreter”...

t? Thonny - <untitled> @ 1:1 o O %
File Edit View Run Tools Help

DERH O% w
<untitled>

1

Thonny options X
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which interpreter or device should Thenny use for running your code?
The same interpreter which runs Thenny (default)

The same interpreter which runs Thonny (default)
Alternative Python 3 interpreter or virtual environment
Remote Python 3 (55H)

MicroPython (55H)

MicroPython (BBC micro:bit)

MicroPython (Raspberry Pi Pico)

MicroPython (E5P32)

MicroPython (ESPE266)

MicroPythen (generic)

CircuitPython (generic)

A special virtual environment (deprecated)

Shell

>

Ca n Ce'

Python 3.7.9

Choose “MicroPython (Raspberry Pi Pico)” as the interpreter.
This is the point where MicroPython will be downloaded to the Pi Pico.

Thonny will ask you to plug in your Pi Pico whilst the onboard button is pressed, and try to connect
to it. When it does, download MicroPython to it.

However, you may find that Thonny can’t see the Pi Pico port. If so, then there is probably a driver
missing.

We found a solution given by “One Transistor” https://www.onetransistor.eu/2021/02/set-up-
raspberry-pi-pico-for-microphyton.html that suggests adding a driver.

Download Zadig from https://zadig.akeo.ie/ and run it.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 39 of 44
Web: www.easydag.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://www.onetransistor.eu/2021/02/set-up-raspberry-pi-pico-for-microphyton.html
https://www.onetransistor.eu/2021/02/set-up-raspberry-pi-pico-for-microphyton.html
https://zadig.akeo.ie/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

Ed Zadig (=@ =]
Device Options Help

Board CDC (Interface 0) v | FlEdt
Driver usbser (v1.0.0.0)) WinUSB (v6.1.7600.16385) = Hore Information

== : WinUSB {libusb)
USBID 2E8A 0005 00 (&9 libusb-win32

v

Replace Driver libusbK

WinUSB (Microsoft)

wcn2 X

4 devices found.

Figure 26. Zadig

It may find that the Pi Pico is missing a driver if so, then select USB Serial (CDC) and install the driver.
You should find that Thonny can now see the required port and you are good to go.

If there is a driver installed but it is the wrong one then you will have to use Options>List All Devices.
This will show all connected USB objects. Select the “Board CDC(Interface 0)” device then select
“USB Serial (CDC)”. If this works then Thonny will suddenly be able to see the Pi Pico.

Remember. Once the MicroPython has been loaded onto the Pi Pico then you will no longer need to
hold down the Boot button when plugging in the Pi Pico.

Also, if you buy your Pi Pico from us it wil have the pins solderd on and MicroPython pre loaded for
testing.

3.11. LCD_API Commands

Table 6. LCD_API commands

Instruction Description
clear(): Clears the LCD display and moves the cursor to the top left
corner

show_cursor():

Causes the cursor to be made visible

hide_cursor():

Causes the cursor to be hidden

blink_cursor_on():

Turns on the cursor, and makes it blink

blink_cursor_off():

Turns on the cursor, and makes it no blink (i.e. be solid)

display_on():

Turns on (i.e. unblanks) the LCD

display_off():

Turns off (i.e. blanks) the LCD

backlight_on():

Turns the backlight on.

This isn't really an LCD command, but some modules have
back light controls which are activated by 1 bit of the PCF8574
parallel to serial converter chip in the I12C interface.

backlight_off():

Turns the backlight off.

Version 1.1 23" April 2022

© GreenHalse Electronics Ltd

Email: sales@easydag.co.uk
Web: www.easydag.co.uk

Page 40 of 44

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

This isn't really an LCD command, but some modules have
backlight controls which are activated by 1 bit of the PCF8574
parallel to serial converter chip in the I12C interface.

move_to(cursor_x, cursor_y):

Moves the cursor position to the indicated position.

The cursor position is zero based (i.e. cursor_x == 0 indicates
first column).

putchar(char):

Writes the indicated character to the LCD at the current
cursor position, and advances the cursor by one position.

putstr(string):

Write the indicated string to the LCD at the current cursor
position and advances the cursor position appropriately.

custom_char(location, charmap):

Write a character to one of the 8 CGRAM locations, available
as chr(0) through chr(7).

Version 1.1 23" April 2022

© GreenHalse Electronics Ltd

Email: sales@easydag.co.uk Page 41 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

4. Pi-Pico ideas

For project ideas for Pi-Pico check out and search for Raspberry Pi Pico on:

https://www.instructables.com

https://hackaday.com

https://www.tomshardware.com

https://www.electronicshub.org

http://www.penguintutor.com

https://www.hackster.io/

https://www.youtube.com/

https://makersportal.com

The list is growing all the time. Just type “Raspberry Pi Pico™” (Without the “™” ©) into a web

browser and lots of fun stuff will pop up.

© GreenHalse Electronics Ltd

Version 1.1 23" April 2022 Email: sales@easydag.co.uk

Web: www.easydag.co.uk

Page 42 of 44

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
https://www.instructables.com/
https://hackaday.com/
https://www.tomshardware.com/
https://www.electronicshub.org/
http://www.penguintutor.com/
https://www.hackster.io/
https://www.youtube.com/
https://makersportal.com/

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

5. The small print
Please note:

1. This is a collection of individual electronic components for a responsible adult to use,
following specific instructions for experiments, and using only a Raspberry Pi Pico™ on a
computer USB connection for the power. “No liability can be accepted for injury, fire or
damage, howsoever caused etc.”

2. Users are reminded not to use any damaged goods, and are reminded not to expose
components or wires to any substances or situations which may cause them to break or
degrade.

3. The components of this kit are RoHS compliant to the best of our knowledge and the
soldering we have completed is compliant to RoHS.

4. GreenHalse Electronics Ltd. are fulfilling their Distributor Obligations as a member of the
WEEE Distributor Takeback Scheme through Valpak WEEE Retail Services - Registration ID :
416634

Recycling your old electricals is easy!
Recycle your electrical and electronic devices free at your local recycling centre. To find your

nearest centre, visit the Recycle More www.recycle-more.co.uk website and type in your
postcode.

5. Thisis not a toy. This kit contains small parts — keep out of the reach of young
children. Choking hazard.

6. Software Disclaimer

The software provided with this kit is free to use but please leave the author details in place.
Our software is covered by this disclaimer: While GreenHalse Electronics Ltd makes every
effort to deliver high quality products; we do not guarantee that our products are free from
defects. Our software is provided “as is," and you use the software at your own risk. We
make no warranties as to performance, merchantability, fitness for a particular purpose, or
any other warranties whether expressed or implied. No oral or written communication from
or information provided by GreenHalse Electronics Ltd shall create a warranty. Under no
circumstances shall GreenHalse Electronics be liable for direct, indirect, special, incidental,
or consequential damages resulting from the use, misuse, or inability to use this software,
even if GreenHalse Electronics has been advised of the possibility of such damages.

© GreenHalse Electronics Ltd
Version 1.1 23" April 2022 Email: sales@easydag.co.uk Page 43 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
http://www.recycle-more.co.uk/

6. Glossary

EasyDAQ-Kit 1 and EasyDAQ-Kit 1+

ADC

Analog to Digital Converter. The Pi Pico has 3 of them available.

Anode

The positive side of a diode such as an LED.

API

Application Programming Interface. In this case it is generally chunks of pre-
written software embedded within MicroPython or a library used to control
and configure the RP2040 microcontroller.

Compiler

In the computing world a compiler will examine a program written in a
computer Language such as Arduino, basic, C, Python, Pascal and many others
and generate machine code specifically for the target processor. This machine
code file is then made available for the processor to run as often as required.
The compiler is no longer needed and the resultant machine code is very fast
and compact.

Cathode

The negative side of a diode such as an LED.

IDE

Integrated Development Environment i.e. Thonny, Arduino, PyCharm and many
others. These programs bring together tools and compilers to help with the
process of developing software for various hardware such as the Pi-Pico,
Raspberry Pi, Arduino™ boards and may other boards and processors.

Interpreter

In the computing world, an Interpreter will execute a program directly from
text written in a programming language such as MicroPython or Basic. Although
modern interpreters are very clever they are unlikely to be as fast as in
operation as compiled code. They also are required to be installed on the target
processor taking up valuable memory space.

Pk-Pk

Peak to Peak. The maximum voltage across a device. Generally used for AC
signals.

PIO

Programmable Input/Output. The Pi Pico has 8 independent 10 processors that
can be reprogrammed on the fly to perform high speed communications and
control functions and off load otherwise intensive tasks from the processor.

Pi Pico

Short for “Raspberry Pi Pico™” in this document.

PWM

Pulse Width Modulation. Rapidly turning a signal off and on where the ratio of
the off to on time changes to convey information or control power.

STEM

STEM Learning operates the National STEM Learning Centre and Network,
alongside other projects supporting STEM education www.stem.org.uk

The term STEM is worldwide to promote the Science, technology, engineering,
and mathematics disciplines.

The Book

“Getting started with MicroPython on Raspberry Pi Pico” published by
Raspberry Pi™ Press. ISBN: 978-1-912047-86-4

Thonny

A nice, easy and Free Python Integrated Development Environment (IDE)
developed by University of Tartu, Estonia, and supported by Cybernetica and
the Raspberry Pi Foundation.

URL

Uniform Resource Locator otherwise known as a web address.

usB

Universal Serial Bus. This port on a PC, MAC or Raspberry Pi™ is used by this kit
to provide power and data to the Raspberry Pi Pico™ and the experiments.

Table 7. Glossary

Version Date Notes

number

1.0 23" April 2021 First release

1.1 28 April 2022 Corrected pin number in I2C LCD Display circuit wiring guide. Added rear

view of I12C, 2x16 char LCD Display in contents photographs. Lots of
grammar and spelling corrections!

Version 1.1 23" April 2022

© GreenHalse Electronics Ltd

Email: sales@easydag.co.uk Page 44 of 44
Web: www.easydaqg.co.uk

mailto:sales@greenhalseelectronics.co.uk
http://www.easydaq.co.uk/
http://www.stem.org.uk/

